scholarly journals A Numerical Study of an Extreme Cold-Air Outbreak over the Labrador Sea: Sea Ice, Air–Sea Interaction, and Development of Polar Lows

2001 ◽  
Vol 129 (1) ◽  
pp. 47-72 ◽  
Author(s):  
Mariusz Pagowski ◽  
G. W. K. Moore
2016 ◽  
Vol 172-173 ◽  
pp. 48-65 ◽  
Author(s):  
Antonio Ricchi ◽  
Mario Marcello Miglietta ◽  
Pier Paolo Falco ◽  
Alvise Benetazzo ◽  
Davide Bonaldo ◽  
...  

Author(s):  
Annick Terpstra ◽  
Shun-ichi Watanabe

Polar lows are intense maritime mesoscale cyclones developing in both hemispheres poleward of the main polar front. These rapidly developing severe storms are accompanied by strong winds, heavy precipitation (hail and snow), and rough sea states. Polar lows can have significant socio-economic impact by disrupting human activities in the maritime polar regions, such as tourism, fisheries, transportation, research activities, and exploration of natural resources. Upon landfall, they quickly decay, but their blustery winds and substantial snowfall affect the local communities in coastal regions, resulting in airport-closure, transportation breakdown and increased avalanche risk. Polar lows are primarily a winter phenomenon and tend to develop during excursions of polar air masses, originating from ice-covered areas, over the adjacent open ocean. These so-called cold-air outbreaks are driven by the synoptic scale atmospheric configuration, and polar lows usually develop along air-mass boundaries associated with these cold-air outbreaks. Local orographic features and the sea-ice configuration also play prominent roles in pre-conditioning the environment for polar low development. Proposed dynamical pathways for polar low development include moist baroclinic instability, symmetric convective instability, and frontal instability, but verification of these mechanisms is limited due to sparse observations and insufficient resolution of reanalysis data. Maritime areas with a frequent polar low presence are climatologically important regions for the global ocean circulation, hence local changes in energy exchange between the atmosphere and ocean in these regions potentially impacts the global climate system. Recent research indicates that the enhanced heat and momentum exchange by mesoscale cyclones likely has a pronounced impact on ocean heat transport by triggering deep water formation in the ocean and by modifying horizontal mixing in the atmosphere. Since the beginning of the satellite-era a steady decline of sea-ice cover in the Northern Hemisphere has expanded the ice-free polar regions, and thus the areas for polar low development, yet the number of polar lows is projected to decline under future climate scenarios.


OCEANS 2009 ◽  
2009 ◽  
Author(s):  
T. G. Jensen ◽  
T. Campbell ◽  
T. A. Smith ◽  
R. J. Small ◽  
R. Allard

2017 ◽  
Vol 59 (76pt2) ◽  
pp. 181-190 ◽  
Author(s):  
Thomas J. Ballinger ◽  
Edward Hanna ◽  
Richard J. Hall ◽  
Thomas E. Cropper ◽  
Jeffrey Miller ◽  
...  

ABSTRACTThe Arctic marine environment is undergoing a transition from thick multi-year to first-year sea-ice cover with coincident lengthening of the melt season. Such changes are evident in the Baffin Bay-Davis Strait-Labrador Sea (BDL) region where melt onset has occurred ~8 days decade−1 earlier from 1979 to 2015. A series of anomalously early events has occurred since the mid-1990s, overlapping a period of increased upper-air ridging across Greenland and the northwestern North Atlantic. We investigate an extreme early melt event observed in spring 2013. (~6σ below the 1981–2010 melt climatology), with respect to preceding sub-seasonal mid-tropospheric circulation conditions as described by a daily Greenland Blocking Index (GBI). The 40-days prior to the 2013 BDL melt onset are characterized by a persistent, strong 500 hPa anticyclone over the region (GBI >+1 on >75% of days). This circulation pattern advected warm air from northeastern Canada and the northwestern Atlantic poleward onto the thin, first-year sea ice and caused melt ~50 days earlier than normal. The episodic increase in the ridging atmospheric pattern near western Greenland as in 2013, exemplified by large positive GBI values, is an important recent process impacting the atmospheric circulation over a North Atlantic cryosphere undergoing accelerated regional climate change.


2004 ◽  
Vol 17 (21) ◽  
pp. 4267-4279 ◽  
Author(s):  
Aixue Hu ◽  
Gerald A. Meehl ◽  
Warren M. Washington ◽  
Aiguo Dai

Abstract Changes in the thermohaline circulation (THC) due to increased CO2 are important in future climate regimes. Using a coupled climate model, the Parallel Climate Model (PCM), regional responses of the THC in the North Atlantic to increased CO2 and the underlying physical processes are studied here. The Atlantic THC shows a 20-yr cycle in the control run, qualitatively agreeing with other modeling results. Compared with the control run, the simulated maximum of the Atlantic THC weakens by about 5 Sv (1 Sv ≡ 106 m3 s−1) or 14% in an ensemble of transient experiments with a 1% CO2 increase per year at the time of CO2 doubling. The weakening of the THC is accompanied by reduced poleward heat transport in the midlatitude North Atlantic. Analyses show that oceanic deep convective activity strengthens significantly in the Greenland–Iceland–Norway (GIN) Seas owing to a saltier (denser) upper ocean, but weakens in the Labrador Sea due to a fresher (lighter) upper ocean and in the south of the Denmark Strait region (SDSR) because of surface warming. The saltiness of the GIN Seas are mainly caused by an increased salty North Atlantic inflow, and reduced sea ice volume fluxes from the Arctic into this region. The warmer SDSR is induced by a reduced heat loss to the atmosphere, and a reduced sea ice flux into this region, resulting in less heat being used to melt ice. Thus, sea ice–related salinity effects appear to be more important in the GIN Seas, but sea ice–melt-related thermal effects seem to be more important in the SDSR region. On the other hand, the fresher Labrador Sea is mainly attributed to increased precipitation. These regional changes produce the overall weakening of the THC in the Labrador Sea and SDSR, and more vigorous ocean overturning in the GIN Seas. The northward heat transport south of 60°N is reduced with increased CO2, but increased north of 60°N due to the increased flow of North Atlantic water across this latitude.


Sign in / Sign up

Export Citation Format

Share Document